Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
2.
J Bone Miner Res ; 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38477783

RESUMO

Healthy alveolar bone is the cornerstone of oral function and oral treatment. Alveolar bone is highly dynamic during the entire lifespan and is affected by both systemic and local factors. Importantly, alveolar bone is subjected to unique occlusal force in daily life, and mechanical force is a powerful trigger of bone remodeling, but the effect of occlusal force in maintaining alveolar bone mass remains ambiguous. In this study, the Piezo1 channel is identified as an occlusal force sensor. Activation of Piezo1 rescues alveolar bone loss caused by a loss of occlusal force. Moreover, we identify Piezo1 as the mediator of occlusal force in osteoblasts, maintaining alveolar bone homeostasis by directly promoting osteogenesis and by sequentially regulating catabolic metabolism through Fas ligand (FasL)-induced osteoclastic apoptosis. Interestingly, Piezo1 activation also exhibits remarkable efficacy in the treatment of alveolar bone osteoporosis caused by estrogen deficiency, which is highly prevalent among middle-aged and elderly women. Promisingly, Piezo1 may serve not only as a treatment target for occlusal force loss-induced alveolar bone loss but also as a potential target for metabolic bone loss, especially in older patients.


1. Daily occlusal force and estrogen synergistically maintain alveolar bone homeostasis. 2. PIEZO1 in osteoblasts plays a critical role in sensing occlusal force and maintaining bone mass. 3. PIEZO1 may promote osteoclastic apoptosis through osteoblast -secreted FasL through a PIEZO1- STAT3/ESR1-FasL pathway. 4. Restoration of occlusal force with dental therapies as early as possible to prevent alveolar bone loss is the major priority in oral health care. 5. PIEZO1 may serve as a potential target for bone metabolism disorders.

3.
J Neuroinflammation ; 21(1): 59, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419038

RESUMO

We previously identified solute carrier family 7 member 2 (SLC7A2) as one of the top upregulated genes when normal Huntingtin was deleted. SLC7A2 has a high affinity for L-arginine. Arginine is implicated in inflammatory responses, and SLC7A2 is an important regulator of innate and adaptive immunity in macrophages. Although neuroinflammation is clearly demonstrated in animal models and patients with Huntington's disease (HD), the question of whether neuroinflammation actively participates in HD pathogenesis is a topic of ongoing research and debate. Here, we studied the role of SLC7A2 in mediating the neuroinflammatory stress response in HD cells. RNA sequencing (RNA-seq), quantitative RT-PCR and data mining of publicly available RNA-seq datasets of human patients were performed to assess the levels of SLC7A2 mRNA in different HD cellular models and patients. Biochemical studies were then conducted on cell lines and primary mouse astrocytes to investigate arginine metabolism and nitrosative stress in response to neuroinflammation. The CRISPR-Cas9 system was used to knock out SLC7A2 in STHdhQ7 and Q111 cells to investigate its role in mediating the neuroinflammatory response. Live-cell imaging was used to measure mitochondrial dynamics. Finally, exploratory studies were performed using the Enroll-HD periodic human patient dataset to analyze the effect of arginine supplements on HD progression. We found that SLC7A2 is selectively upregulated in HD cellular models and patients. HD cells exhibit an overactive response to neuroinflammatory challenges, as demonstrated by abnormally high iNOS induction and NO production, leading to increased protein nitrosylation. Depleting extracellular Arg or knocking out SLC7A2 blocked iNOS induction and NO production in STHdhQ111 cells. We further examined the functional impact of protein nitrosylation on a well-documented protein target, DRP-1, and found that more mitochondria were fragmented in challenged STHdhQ111 cells. Last, analysis of Enroll-HD datasets suggested that HD patients taking arginine supplements progressed more rapidly than others. Our data suggest a novel pathway that links arginine uptake to nitrosative stress via upregulation of SLC7A2 in the pathogenesis and progression of HD. This further implies that arginine supplements may potentially pose a greater risk to HD patients.


Assuntos
Doença de Huntington , Estresse Nitrosativo , Animais , Humanos , Camundongos , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Arginina , Linhagem Celular , Doença de Huntington/genética , Inflamação , Doenças Neuroinflamatórias
4.
J Orthop Surg Res ; 19(1): 63, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218851

RESUMO

OBJECTIVE: To assess whether there is a difference between measurements of odontoid incidence (OI) and other cervical sagittal parameters by X-ray radiography and those by supine magnetic resonance imaging (MRI). METHODS: Standing X-ray and supine MRI images of 42 healthy subjects were retrospectively analyzed. Surgimap software was employed to measure cervical sagittal parameters including OI, odontoid tilt (OT), C2 slope (C2S), C0-2 angle, C2-7 angle, T1 slope (T1S) and T1S-cervical lordosis (CL). Paired samples t-test was applied to determine the difference between parameters measured by standing X-ray and those by supine MRI. In addition, the statistical correlation between the parameters were compared. The prediction of CL was performed and validated using the formula CL = 0.36 × OI - 0.67 × OT - 0.69 × T1S. RESULTS: Significant correlations and differences were found between cervical sagittal parameters determined by X-ray and those by MRI. OI was verified to be a constant anatomic parameter and the formula CL = 0.36 × OI - 0.67 × OT - 0.69 × T1S can be used to predict CL in cervical sagittal parameters. CONCLUSIONS: OI is verified as a constant anatomic parameter, demonstrating the necessity of a combined assessment of cervical sagittal balance by using standing X-ray and supine MRI. The formula CL = 0.36 × OI - 0.67 × OT - 0.69 × T1S can be applied to predict CL in cervical sagittal parameters.


Assuntos
Lordose , Processo Odontoide , Humanos , Estudos Retrospectivos , Processo Odontoide/diagnóstico por imagem , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/patologia , Radiografia , Imageamento por Ressonância Magnética , Lordose/diagnóstico por imagem
5.
J Neurosurg ; 140(3): 792-799, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37724811

RESUMO

OBJECTIVE: The authors aimed to investigate the evolutionary characteristics of the Zabramski classification of cerebral cavernous malformations (CCMs) and the value of the Zabramski classification in predicting clinical outcome in patients with sporadic CCM. METHODS: This retrospective study consecutively included cases of sporadic CCM that had been untreated from January 2001 through December 2021. Baseline and follow-up patient information was recorded. The evolution of the Zabramski classification of a sporadic CCM was defined as the initial lesion type changing into another type for the first time on MRI follow-up. The primary outcome was the occurrence of a hemorrhage event, which was defined as a symptomatic event with radiological evidence of overt intracerebral hemorrhage. RESULTS: Among the 255 included cases, 55 (21.6%) were classified as type I CCM, 129 (50.6%) as type II CCM, and 71 (27.8%) as type III CCM, based on initial MRI. During a mean follow-up of 58.8 ± 33.6 months, 51 (20.0%) patients had lesion classification transformation, whereas 204 (80.0%) patients maintained their initial type. Among the 51 transformed lesions, 29 (56.9%) were type I, 11 (21.6%) were type II, and 11 (21.6%) were type III. Based on all follow-up imaging, of the initial 55 type I lesions, 26 (47.3%) remained type I and 27 (49.1%) regressed to type III because of hematoma absorption; 91.5% of type II and 84.5% of type III lesions maintained their initial type during MRI follow-up. The classification change rate of type I lesions was statistically significantly higher than those of type II and III lesions. After a total follow-up of 1157.7 patient-years, new clinical hemorrhage events occurred in 40 (15.7%) patients. The annual cumulative incidence rate for symptomatic hemorrhage in all patients was 3.4 (95% CI 2.5-4.7) per 100 person-years. Kaplan-Meier survival analysis showed that the annual cumulative incidence rate for symptomatic hemorrhage of type I CCM (15.3 per 100 patient-years) was significantly higher than those of type II (0.6 per 100 patient-years) and type III (2.3 per 100 patient-years). CONCLUSIONS: This study suggests that the Zabramski classification is helpful in estimating clinical outcome and can assist with surgical decision-making in patients with sporadic CCM.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Humanos , Estudos Retrospectivos , Hemangioma Cavernoso do Sistema Nervoso Central/complicações , Hemangioma Cavernoso do Sistema Nervoso Central/diagnóstico por imagem , Hemangioma Cavernoso do Sistema Nervoso Central/epidemiologia , Hemorragia Cerebral/diagnóstico por imagem , Hemorragia Cerebral/etiologia , Hemorragia Cerebral/epidemiologia , Imageamento por Ressonância Magnética/efeitos adversos , Estimativa de Kaplan-Meier
6.
Adv Healthc Mater ; : e2303681, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054523

RESUMO

Overactivated inflammatory reactions hinder the bone regeneration process. Timely transformation of microenvironment from pro-inflammatory to anti-inflammatory after acute immune response is favorable for osteogenesis. Macrophages play an important role in the immune response to inflammation. Therefore, this study adopts TIM3 high expression extracellular vesicles (EVs) with immunosuppressive function to reshape the early immune microenvironment of bone injury, mainly by targeting macrophages. These EVs can be phagocytosed by macrophages, thereby increasing the infiltration of TIM3-positive macrophages (TIM3+ macrophages) and M2 subtypes. The TIM3+ macrophage group has some characteristics of M2 macrophages and secretes cytokines, such as IL-10 and TGF-ß1 to regulate inflammation. TIM3, which is highly expressed in the engineered EVs, mediates the release of anti-inflammatory cytokines by inhibiting the p38/MAPK pathway and promotes osseointegration by activating the Bmp2 promoter to enhance macrophage BMP2 secretion. After evenly loading the engineered EVs into the hydrogel, the continuous and slow release of EVsTIM3OE recruits more anti-inflammatory macrophages during the early stages of bone defect repair, regulating the immune microenvironment and eliminating the adverse effects of excessive inflammation. In summary, this study provides a new strategy for the treatment of refractory wounds through early inflammation control.

7.
ACS Appl Mater Interfaces ; 15(50): 58497-58507, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38055796

RESUMO

The shuttle effect and slow conversion kinetics of soluble polysulfides hinder the commercial application of lithium-sulfur batteries (LSBs). In this context, we propose a three-dimensional lamellar-stacked nanostructure of nickel cobalt sulfide (D-NiCo2S4) enriched with lattice defects by manipulating the cations in spinel sulfides. It has an obvious synergistic promotion mechanism for the adsorption and catalysis of lithium sulfides. Specifically, Ni3+ on tetrahedral (Td) sites with strong Ni-S covalency anchors LiPSs, whereas Co3+ on octahedral (Oh) sites promotes a highly efficient catalytic conversion of LiPSs, which is confirmed by experimental results and density functional theory (DFT) calculations. Besides, the crystal defects and distortions in the lamellar region could expose more active sites and enhance the redox reaction kinetics of polysulfides. Hence, Li-S batteries with D-NiCo2S4@S as the cathode show outstanding cycle stability; upon cycling at 1 A/g, the battery achieves a high initial specific capacity of 1001.12 and 655.31 mAh g-1 after 1000 cycles (decay rate as low as 0.05% per cycle), as well as a high initial areal capacity of 3.15 mAh cm-2 under high S loading (4.2 mg cm-2). This work provides a viable scheme for designing efficient bimetal sulfide catalysts and furnishes a rational strategy for constructing LSB cathodes with high specific capacity and high area capacity.

8.
J Vis Exp ; (200)2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37902362

RESUMO

Red blood cells (RBCs) are known for their remarkable deformability. They repeatedly undergo considerable deformation when passing through the microcirculation. Reduced deformability is seen in physiologically aged RBCs. Existing techniques to measure cell deformability cannot easily be used for measuring fatigue, the gradual degradation in cell membranes caused by cyclic loads. We present a protocol to evaluate mechanical degradation in RBCs from cyclic shear stresses using amplitude shift keying (ASK) modulation-based electrodeformation in a microfluidic channel. Briefly, the interdigitated electrodes in the microfluidic channel are excited with a low voltage alternating current at radio frequencies using a signal generator. RBCs in suspension respond to the electric field and exhibit positive dielectrophoresis (DEP), which moves cells to the electrode edges. Cells are then stretched due to the electrical forces exerted on the two cell halves, resulting in uniaxial stretching, known as electrodeformation. The level of shear stress and the resultant deformation can be easily adjusted by changing the amplitude of the excitation wave. This enables quantifications of nonlinear deformability of RBCs in response to small and large deformations at high throughput. Modifying the excitation wave with the ASK strategy induces cyclic electrodeformation with programmable loading rates and frequencies. This provides a convenient way for the characterization of RBC fatigue. Our ASK-modulated electrodeformation approach enables, for the first time, a direct measurement of RBC fatigue from cyclic loads. It can be used as a tool for general biomechanical testing, for analyses of cell deformability and fatigue in other cell types and diseased conditions, and can also be combined with strategies to control the microenvironment of cells, such as oxygen tension and biological and chemical cues.


Assuntos
Deformação Eritrocítica , Eritrócitos , Eritrócitos/fisiologia , Microfluídica , Membrana Celular , Eletrodos , Estresse Mecânico
9.
Front Cell Dev Biol ; 11: 1174579, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818127

RESUMO

Dental mesenchymal stem cells (DMSCs) are multipotent progenitor cells that can differentiate into multiple lineages including odontoblasts, osteoblasts, chondrocytes, neural cells, myocytes, cardiomyocytes, adipocytes, endothelial cells, melanocytes, and hepatocytes. Odontoblastic differentiation of DMSCs is pivotal in dentinogenesis, a delicate and dynamic process regulated at the molecular level by signaling pathways, transcription factors, and posttranscriptional and epigenetic regulation. Mutations or dysregulation of related genes may contribute to genetic diseases with dentin defects caused by impaired odontoblastic differentiation, including tricho-dento-osseous (TDO) syndrome, X-linked hypophosphatemic rickets (XLH), Raine syndrome (RS), hypophosphatasia (HPP), Schimke immuno-osseous dysplasia (SIOD), and Elsahy-Waters syndrome (EWS). Herein, recent progress in the molecular regulation of the odontoblastic differentiation of DMSCs is summarized. In addition, genetic syndromes associated with disorders of odontoblastic differentiation of DMSCs are discussed. An improved understanding of the molecular regulation and related genetic syndromes may help clinicians better understand the etiology and pathogenesis of dentin lesions in systematic diseases and identify novel treatment targets.

10.
J Vis Exp ; (197)2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37677029

RESUMO

The alveolar bone, with a high turnover rate, is the most actively-remodeling bone in the body. Orthodontic tooth movement (OTM) is a common artificial process of alveolar bone remodeling in response to mechanical force, but the underlying mechanism remains elusive. Previous studies have been unable to reveal the precise mechanism of bone remodeling in any time and space due to animal model-related restrictions. The signal transducer and activator of transcription 3 (STAT3) is important in bone metabolism, but its role in osteoblasts during OTM is unclear. To provide in vivo evidence that STAT3 participates in OTM at specific time points and in particular cells during OTM, we generated a tamoxifen-inducible osteoblast lineage-specific Stat3 knockout mouse model, applied orthodontic force, and analyzed the alveolar bone phenotype. Micro-computed tomography (Micro-CT) and stereo microscopy were used to access OTM distance. Histological analysis selected the area located within three roots of the first molar (M1) in the cross-section of the maxillary bone as the region of interest (ROI) to evaluate the metabolic activity of osteoblasts and osteoclasts, indicating the effect of orthodontic force on alveolar bone. In short, we provide a protocol for using inducible osteoblast lineage-specific Stat3 knockout mice to study bone remodeling under orthodontic force and describe methods for analyzing alveolar bone remodeling during OTM, thus shedding new light on skeletal mechanical biology.


Assuntos
Fator de Transcrição STAT3 , Técnicas de Movimentação Dentária , Camundongos , Animais , Camundongos Knockout , Fator de Transcrição STAT3/genética , Microtomografia por Raio-X , Remodelação Óssea , Modelos Animais de Doenças
11.
World J Orthop ; 14(8): 641-650, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37662667

RESUMO

BACKGROUND: East Asia is the most dynamic region in the world and includes three major countries: Japan, South Korea and China. Due to rapid economic growth, orthopedics research in East Asia has achieved great advances during the past 10 years. However, the current status of orthopedic research in Japan, South Korea and China is still unclear. AIM: To understand the current status of orthopedic research in Japan, South Korea, and China. METHODS: Journals listed in the ''Orthopedics'' category of Science Citation Index Expanded subject categories were included. The PubMed and Web of Knowledge electronic databases were searched to identify scientific publications from the selected journals written by researchers from Japan, South Korea and China. A systematic analysis was conducted to analyze orthopedic research articles published in the three countries based on the number of articles, study design, impact factors (IFs) and citations. Furthermore, we also ranked the top 10 countries worldwide with the highest publications in the past 10 years. Additionally, we ranked the top 10 countries with the highest number of publications in the world in the past 10 years. Statistical analyses were performed using SPSS 20.0 software (SPSS Inc., Chicago, IL, United States), and statistical results are given in Tables and Figures. The Kruskal-Wallis test and the Mann-Whitney test were used to detect differences between countries. The tendency regarding the number of articles was analyzed by curvilinear regression. A two-tailed P < 0.05 was considered significant. RESULTS: From 2012-2021, a total of 144518 articles were published in the 86 selected orthopedic journals. During this period, the number of worldwide published orthopedic articles has shown an annual increasing trend. A total of 27164 orthopedic research articles were published by Japan, South Korea and China during the past 10 years; 44.32% were from China, 32.98% were from Japan, and 22.70% were from South Korea. From 2012 to 2021, the annual number of articles markedly increased in each of the three countries. Over time, the worldwide share of articles increased substantially in South Korea (3.37% to 6.53%, P < 0.001) and China (5.29% to 9.61%, P < 0.001). However, the worldwide share of articles significantly decreased in Japan (5.22% to 3.80%, P < 0.001). The annual total IFs of articles from China were well above those of articles from Japan and South Korea (36597.69 vs 27244.48 vs 20657.83, P < 0.05). There was no significant difference among the articles in the top 10 high-IF orthopedics journals published from those three countries [South Korea (800) > China (787) > Japan (646), P > 0.05]. CONCLUSION: Over the past 10 years, China's scientific publications in orthopedic journals have shown an increasing trend. Considering the relative scale of the populations, Japan and South Korea have outpaced China with respect to quality.

12.
Biomedicines ; 11(7)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37509524

RESUMO

Carbamathione (Carb), an NMDA glutamate receptor partial antagonist, has potent neuroprotective functions against hypoxia- or ischemia-induced neuronal injury in cell- or animal-based stroke models. We used PC-12 cell cultures as a cell-based model and bilateral carotid artery occlusion (BCAO) for stroke. Whole-cell patch clamp recording in the mouse retinal ganglion cells was performed. Key proteins involved in apoptosis, endoplasmic reticulum (ER) stress, and heat shock proteins were analyzed using immunoblotting. Carb is effective in protecting PC12 cells against glutamate- or hypoxia-induced cell injury. Electrophysiological results show that Carb attenuates NMDA-mediated glutamate currents in the retinal ganglion cells, which results in activation of the AKT signaling pathway and increased expression of pro-cell survival biomarkers, e.g., Hsp 27, P-AKT, and Bcl2 and decreased expression of pro-cell death markers, e.g., Beclin 1, Bax, and Cleaved caspase 3, and ER stress markers, e.g., CHOP, IRE1, XBP1, ATF 4, and eIF2α. Using the BCAO animal stroke model, we found that Carb reduced the brain infarct volume and decreased levels of ER stress markers, GRP 78, CHOP, and at the behavioral level, e.g., a decrease in asymmetric turns and an increase in locomotor activity. These findings for Carb provide promising and rational strategies for stroke therapy.

13.
J Colloid Interface Sci ; 648: 846-854, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37327627

RESUMO

Lithium-sulfur (Li-S) battery has been considered as a potential next-era energy storage device. However, its practical application is limited by the volume change of sulfur and the shuttle effect of lithium polysulfides. To effectively overcome these issues, a hollow carbon decorated with cobalt nanoparticles and interconnected by nitrogen doped carbon nanotubes (Co-NCNT@HC) is developed for high-performance Li-S battery. The uniformly distributed nitrogen and cobalt nanoparticles in Co-NCNT@HC are able to enhance the chemical adsorption capability and fasten the transformation speed of the intermediates, thus effectively inhibit the loss of lithium polysulfides. Moreover, the hollow carbon spheres interconnected by carbon nanotubes are structurally stable and electrically conductive. Due to the unique structure, the Li-S battery enhanced by Co-NCNT@HC shows a high initial capacity of 1550 mAh/g at 0.1 A g-1. Even at a high current density of 2.0 A g-1, after 1000 cycles, it still maintains a capacity of 750 mAh/g with a capacity retention of 76.4% (the capacity decay rate is only 0.037% per cycle). This study provides a promising strategy for the development of high-performance Li-S batteries.

14.
J Periodontal Res ; 58(4): 800-812, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37221903

RESUMO

BACKGROUND AND OBJECTIVE: Periodontal ligament (PDL) and dental pulp (DP) share a common origin but have distinct biological and mechanical functions. To what extent the mechanoresponsive property of PDL can be attributed to its unique transcriptional profiles of cellular heterogeneity is unclear. This study aims to decipher cellular heterogeneity and distinct mechanoresponsive characteristics of odontogenic soft tissues and their underlying molecular mechanisms. MATERIALS AND METHODS: A single-cell comparison of digested human periodontal ligament (PDL) and dental pulp (DP) was performed using scRNA-seq. An in vitro loading model was constructed to measure mechanoresponsive ability. Dual-luciferase assay, overexpression, and shRNA knockdown were used to investigate the molecular mechanism. RESULTS: Our results demonstrate striking fibroblast heterogeneity across and within human PDL and DP. We demonstrated that a tissue-specific subset of fibroblasts existed in PDL exhibiting high expression of mechanoresponsive extracellular matrix (ECM) genes, which was verified by an in vitro loading model. ScRNA-seq analysis indicated a particularly enriched regulator in PDL-specific fibroblast subtype, Jun Dimerization Protein 2 (JDP2). Overexpression and knockdown of JDP2 extensively regulated the downstream mechanoresponsive ECM genes in human PDL cells. The force loading model demonstrated that JDP2 responded to tension and that knockdown of JDP2 effectively inhibited the mechanical force-induced ECM remodeling. CONCLUSIONS: Our study constructed the PDL and DP ScRNA-seq atlas to demonstrate PDL and DP fibroblast cellular heterogeneity and identify a PDL-specific mechanoresponsive fibroblast subtype and its underlying mechanism.


Assuntos
Fibroblastos , Análise da Expressão Gênica de Célula Única , Humanos , Células Cultivadas , Fibroblastos/metabolismo , Matriz Extracelular , Ligamento Periodontal/metabolismo
15.
Int J Biol Sci ; 19(7): 2021-2033, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37151888

RESUMO

Bone exhibits changes in density, strength, and microarchitecture in relation to mechanical loading mediated by exercise. Appropriate exercise maintains bone homeostasis, while the absence of exercise leads to disuse bone loss. However, the acting mechanism of mechanotransduction in bone remains unclear. We performed the running-wheel exercise and tail suspension model to study the effects of exercise on bone metabolism, and found that osteoblastic Signal transducer and activator of transcription 3 (STAT3) activity was closely related to exercise-induced bone mass and metabolism changes. With the Flexcell tension-loading system in vitro, mechanical force promoted STAT3 activity, which was accompanied by increased osteoblastic differentiation of the bone marrow mesenchymal stem cells (BMSCs). In contrast, the inhibition of STAT3 phosphorylation blocked force-induced osteoblastic differentiation. Furthermore, pharmacological inactivation of STAT3 impaired the increase in exercise-induced bone mass and osteogenesis. With an inducible conditional deletion mouse model, we found that the osteoblast lineage-specific Stat3 deletion could also block force-induced osteoblastic differentiation in vitro and impair exercise-promoted bone mass and osteogenesis in vivo. This confirmed the crucial role of osteoblastic STAT3 in exercise-mediated bone metabolism. Finally, colivelin, a STAT3 agonist, promoted osteoblastic differentiation in vitro and partly rescued exercise loss-induced disuse bone loss by improving osteogenesis in the tail suspension model. Taken together, our study revealed the essential role of STAT3 in maintaining exercise-mediated bone homeostasis. In addition, STAT3 might act as a potential target for osteoporosis caused by exercise loss.


Assuntos
Doenças Ósseas Metabólicas , Osteogênese , Camundongos , Animais , Osteogênese/genética , Mecanotransdução Celular , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Osso e Ossos/metabolismo , Osteoblastos/metabolismo , Diferenciação Celular/genética , Homeostase , Doenças Ósseas Metabólicas/metabolismo
16.
RSC Adv ; 13(20): 13892-13901, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37181520

RESUMO

A novel sheet-on-sheet architecture with abundant sulfur vacancies (Vs) is designed by in situ growth of flake-like ZnIn2S4 on the reduced graphene oxide (Vs-ZIS@RGO) surface, which serves as a functional layer on the separators for high-performance lithium-sulfur batteries (LSBs). Benefiting from the sheet-on-sheet architecture, the separators exhibit rapid ionic/electronic transfer, which is capable of supporting fast redox reactions. The vertically ordered ZnIn2S4 shortens the diffusion pathways of lithium-ions and the irregularly curved nanosheets expose more active sites to effectively anchor lithium polysulfides (LiPSs). More importantly, the introduction of Vs adjusts the surface or interface electronic structure of ZnIn2S4, enhancing the chemical affinity to LiPSs while accelerating conversion reaction kinetics of LiPSs. As expected, the batteries with Vs-ZIS@RGO modified separators exhibit an initial discharge capacity of 1067 mA h g-1 at 0.5C. Even at 1C, the excellent long cycle stability (710 mA h g-1 over 500 cycles) with an ultra-low decay rate of 0.055% per cycle is also attained. This work proposes a strategy of designing the sheet-on-sheet structure with rich sulfur vacancies, which provides a new perspective to rationally devise durable and efficient LSBs.

17.
Stroke Vasc Neurol ; 8(6): 453-462, 2023 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-37072338

RESUMO

OBJECTIVE: Extra-axial cavernous hemangiomas (ECHs) are sporadic and rare intracranial occupational lesions that usually occur within the cavernous sinus. The aetiology of ECHs remains unknown. METHODS: Whole-exome sequencing was performed on ECH lesions from 12 patients (discovery cohort) and droplet digital polymerase-chain-reaction (ddPCR) was used to confirm the identified mutation in 46 additional cases (validation cohort). Laser capture microdissection (LCM) was carried out to capture and characterise subgroups of tissue cells. Mechanistic and functional investigations were carried out in human umbilical vein endothelial cells and a newly established mouse model. RESULTS: We detected somatic GJA4 mutation (c.121G>T, p.G41C) in 5/12 patients with ECH in the discovery cohort and confirmed the finding in the validation cohort (16/46). LCM followed by ddPCR revealed that the mutation was enriched in lesional endothelium. In vitro experiments in endothelial cells demonstrated that the GJA4 mutation activated SGK-1 signalling that in turn upregulated key genes involved in cell hyperproliferation and the loss of arterial specification. Compared with wild-type littermates, mice overexpressing the GJA4 mutation developed ECH-like pathological morphological characteristics (dilated venous lumen and elevated vascular density) in the retinal superficial vascular plexus at the postnatal 3 weeks, which were reversed by an SGK1 inhibitor, EMD638683. CONCLUSIONS: We identified a somatic GJA4 mutation that presents in over one-third of ECH lesions and proposed that ECHs are vascular malformations due to GJA4-induced activation of the SGK1 signalling pathway in brain endothelial cells.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Hemangioma Cavernoso , Humanos , Animais , Camundongos , Células Endoteliais/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/diagnóstico por imagem , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Hemangioma Cavernoso/metabolismo , Hemangioma Cavernoso/patologia , Mutação , Transdução de Sinais
18.
CNS Neurosci Ther ; 29(5): 1312-1324, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36718590

RESUMO

AIMS: To explore the underlying mechanism by which low-frequency KRAS mutations result in extensive EndMT occurrence. METHODS: Exosomes derived from primarily cultured brain arteriovenous malformation (bAVMs) and human umbilical vein endothelial cells (HUVECs) transfected with KRASG12D , KRASWT , or KRASNC lentiviruses were isolated, and their effects on HUVECs were identified by western blotting and immunofluorescence staining. The expression levels of exosomal microRNAs (miRNAs) were evaluated by miRNA microarray, followed by functional experiments on miR-3131 and detection of its downstream target, and miR-3131 inhibitor in reversing the EndMT process induced by KRASG12D -transfected HUVECs and bAVM endothelial cells (ECs) were explored. RESULTS: Exosomes derived from KRASG12D bAVM ECs and KRASG12D -transfected HUVECs promoted EndMT in HUVECs. MiR-3131 levels were highest in the exosomes of KRASG12D -transfected HUVECs, and HUVECs transfected with the miR-3131 mimic acquired mesenchymal phenotypes. RNA-seq and dual-luciferase reporter assays revealed that PICK1 is the direct downstream target of miR-3131. Exosomal miR-3131 was highly expressed in KRASG12D bAVMexos compared with non-KRAS-mutant bAVMexos or HUVECexos . Finally, a miR-3131 inhibitor reversed EndMT in HUVECs treated with exosomes or the supernatant of KRASG12D -transfected HUVECs and KRASG12D bAVM ECs. CONCLUSION: Exosomal miR-3131 promotes EndMT in KRAS-mutant bAVMs, and miR-3131 might be a potential biomarker and therapeutic target in KRASG12D -mutant bAVMs.


Assuntos
Malformações Arteriovenosas Intracranianas , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Malformações Arteriovenosas Intracranianas/genética , Malformações Arteriovenosas Intracranianas/metabolismo , Mutação/genética , Encéfalo/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas de Transporte/genética , Proteínas Nucleares/genética
19.
Angiogenesis ; 26(2): 295-312, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36719480

RESUMO

Cerebral cavernous malformations (CCMs) refer to a common vascular abnormality that affects up to 0.5% of the population. A somatic gain-of-function mutation in MAP3K3 (p.I441M) was recently reported in sporadic CCMs, frequently accompanied by somatic activating PIK3CA mutations in diseased endothelium. However, the molecular mechanisms of these driver genes remain elusive. In this study, we performed whole-exome sequencing and droplet digital polymerase chain reaction to analyze CCM lesions and the matched blood from sporadic patients. 44 of 94 cases harbored mutations in KRIT1/CCM2 or MAP3K3, of which 75% were accompanied by PIK3CA mutations (P = 0.006). AAV-BR1-mediated brain endothelial-specific MAP3K3I441M overexpression induced CCM-like lesions throughout the brain and spinal cord in adolescent mice. Interestingly, over half of lesions disappeared at adulthood. Single-cell RNA sequencing found significant enrichment of the apoptosis pathway in a subset of brain endothelial cells in MAP3K3I441M mice compared to controls. We then demonstrated that MAP3K3I441M overexpression activated p38 signaling that is associated with the apoptosis of endothelial cells in vitro and in vivo. In contrast, the mice simultaneously overexpressing PIK3CA and MAP3K3 mutations had an increased number of CCM-like lesions and maintained these lesions for a longer time compared to those with only MAP3K3I441M. Further in vitro and in vivo experiments showed that activating PI3K signaling increased proliferation and alleviated apoptosis of endothelial cells. By using AAV-BR1, we found that MAP3K3I441M mutation can provoke CCM-like lesions in mice and the activation of PI3K signaling significantly enhances and maintains these lesions, providing a preclinical model for the further mechanistic and therapeutic study of CCMs.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases , Hemangioma Cavernoso do Sistema Nervoso Central , MAP Quinase Quinase Quinase 3 , Animais , Camundongos , Células Endoteliais/metabolismo , Endotélio/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Mutação/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , MAP Quinase Quinase Quinase 3/genética , MAP Quinase Quinase Quinase 3/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo
20.
Nanoscale ; 15(2): 791-801, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36530169

RESUMO

Currently, a variety of binders are developed to inhibit the rapid capacity fading of Si. The Si anodes are mainly enhanced by the chemical bonding effect on the surface of conventional solid-state binders. However, with a huge volume change of silicon, solid binders are easily deactivated. Herein, a semi-fluid binder termed GPC is designed based on a viscoelastic crosslinking network with abundant active sites and self-healing performance. The backbone of the binder network is in situ synthesized using guar gum (GG), polyacrylic acid (PAA), and citric acid (CA). Serving as the flexible joints and the plasticizer of the network, CA small molecules remarkably improve the viscoelasticity of the binder to tolerate the volume change of Si via rearranging particles in the network during cycling. Moreover, CA can form a layer of surface coating on Si to stabilize the SEI for long-term electrochemical performance. As a result, the Si@GPC electrode shows excellent cycling stability and exhibits a superb capacity of 1292 mA h g-1 after 1000 cycles at 2 A g-1. This work illustrates the advantages and prospects of designing semi-fluid binders for high-performance batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...